All Photos (0)

Key Documents

SDS COO/COA

Specification Sheet

View All Documentation

OCY301
Favorite
Cyanine3 carboxylic acid
suitable for HPLC, ≥99.0%
Synonym(s): TFA
Sign In to View Organizational & Contract Pricing
Select a Size
Pack Size SKU Availability Price Quantity
1mg OCY301-1mg In stock $99.00
- +
5mg OCY301-5mg In stock $189.00
- +
10mg OCY301-10mg In stock $299.00
- +
25mg OCY301-25mg In stock $369.00
- +
50mg OCY301-50mg In stock $626.00
- +
Product Information
General Properties
Spectral Properties
Description
Safety Information
Product Information
CAS Number 1361402-15-4 (zwitterionic form), 1032678-01-5 (hydrochloride salt), 1251915-29-3 (iodide salt)
Linear Formula

C30H37ClN2O2

Molecular weight 493.08
Beilstein
EC Number

200-929-3

MDL Number

PubChem CID 12352106
NACRES

329753348

General Properties
Purity 95%
Appearance Red powder
Solubility Freely soluble in methanol, chloroform, DMSO, DMF, and other organic solvents; slightly soluble in water.
Purity Testing Method HPLC
Structural Identification Method NMR/MS
Storage Conditions −20 °C, keep in dark place.
Spectral Properties
Excitation Wavelength (λₑₓ) 555 nm
Molar Extinction Coefficient (ε) 148000 L⋅mol⁻¹·cm⁻¹
Emission Wavelength (λₑₘ) 570 nm
Fluorescence Quantum Yield (Φ) 0.31
DESCRIPTION
Cyanine3 Carboxylic Acid is a non-activated, non-sulfonated fluorescent dye featuring a terminal carboxyl group. It displays strong orange-red fluorescence and is soluble in polar organic solvents (e.g., DMSO, DMF), though poorly miscible in aqueous solutions. This compound serves as a non-reactive reference fluorophore for calibration, negative controls, or as a precursor for synthesizing activated derivatives.
For covalent conjugation to amine-containing biomolecules (e.g., proteins, peptides), use Cyanine3 NHS ester or its water-soluble sulfonated variant (sulfo-Cyanine3 NHS ester). Store under anhydrous conditions, shielded from light.
SAFETY INFORMATION
  • Pictograms

  • Signal Word

  • Hazard Statements

  • Precautionary Statements

  • Hazard Classifications

  • Storage Class Code

  • WGK

  • Regulatory Information

    View Details
RELATED PRODUCTS
REFERENCES
Xue, M.; Wei, W.; Su, Y.; Johnson, D.; Heath, J.R. Supramolecular Probes for Assessing Glutamine Uptake Enable Semi-Quantitative Metabolic Models in Single Cells. Journal of the American Chemical Society, 2016, 138(9), 3085–3093. doi: 10.1021/jacs.5b12187
Kwok, S.J.J.; Choi, M.; Bhayana, B.; Zhang, X.; Ran, C.; Yun, S.-H. Two-photon excited photoconversion of cyanine-based dyes. Scientific Reports, 2016, 6, 23866. doi: 10.1038/srep23866
Melle, A.; Balaceanu, A.; Kather, M.; Wu, Y.; Gau, E.; Sun, W.; Huang, X.; Shi, X.; Karperien, M.; Pich, A. Stimuli-Responsive Poly(N}-vinylcaprolactam-co-2-methoxyethyl acrylate) Core-Shell Microgels: Facile Synthesis, Modulation of Surface Properties and Controlled Internalisation into Cells. Journal of Materials Chemistry B, 2016, 4(30), 5127–5137. doi: 10.1039/c6tb01196a
Soni, K.S.; Lei, F.; Desale, S.S.; Marky, L.A.; Cohen, S.M.; Bronich, T.K. Tuning polypeptide-based micellar carrier for efficient combination therapy of ErbB2-positive breast cancer. Journal of Controlled Release, 2017, 264, 276–287. doi: 10.1016/j.jconrel.2017.08.038
Mattila, J.T.; Beaino, W.; Maiello, P.; Coleman, M.T.; White, A.G.; Scanga, C.A.; Flynn, J.A.; Anderson, C.J. Positron Emission Tomography Imaging of Macaques with Tuberculosis Identifies Temporal Changes in Granuloma Glucose Metabolism and Integrin α4β1-Expressing Immune Cells. Journal of immunology, 2017, 199(2), 806–815. doi: 10.4049/jimmunol.1700231
Deshmukh, R.; Biehs, S.-A.; Khwaja, E.; Galfsky, T.; Agarwal, G.S.; Menon, V.M. Long-range resonant energy transfer using optical topological transitions in metamaterials. ACS Photonics, 2018, 5(7), 2737–2741. doi: 10.1021/acsphotonics.8b00484
Nam, J.; Lim, H.-K.; Kim, N.H.; Park, J.K.; Kang, E.S.; Kim, Y.-T.; Heo, C.; Lee, O.-S.; Kim, S.-G.; Yun, W.S.; Suh, M.; Kim, Y.H. Supramolecular Peptide Hydrogel-Based Soft Neural Interface Augments Brain Signals through Three-Dimensional Electrical Network. ACS Nano, 2020, 14(1), 664–675. doi: 10.1021/acsnano.9b07396
Nishiyama, K.; Maeki, M.; Ishida, A.; Tani, H.; Hisamoto, H.; Tokeshi, M. Simple Approach for Fluorescence Signal Amplification Utilizing a Poly(Vinyl Alcohol)-Based Polymer Structure in a Microchannel. ACS Omega, 2021, 6(12), 8340–8345. doi: 10.1021/acsomega.1c00057
Mattila, J. T.; Beaino, W.; White, A. G.; Nyiranshuti, L.; Maiello, P.; Tomko, J.; Frye, L. J.; Fillmore, D.; Scanga, C. A.; Lin, P. L.; Flynn, J. L.; Anderson, C. J. Retention of 64Cu-FLFLF, a Formyl Peptide Receptor 1-Specific PET Probe, Correlates with Macrophage and Neutrophil Abundance in Lung Granulomas from Cynomolgus Macaques. ACS Infect. Dis., 2021, 7(8), 2264–2276. doi: 10.1021/acsinfecdis.0c00826
Xu, S.; Zhang, P.; Heing-Becker, I.; Zhang, J.; Tang, P.; Bej, R.; Bhatia, S.; Zhong, Y.; Haag, R. Dual Tumor- and Subcellular-Targeted Photodynamic Therapy Using Glucose-Functionalized MoS2 Nanoflakes for Multidrug-Resistant Tumor Ablation. Biomaterials, 2022, 290, 121844. doi: 10.1016/j.biomaterials.2022.121844
X

omichem

SIGN UP & SAVE 10%

Applies to full-price items only. Online exclusive.

By submitting your email, you agree to:

Receive promotional emails from OMICHEM (unsubscribe anytime)
Our Terms of Use (including arbitration clause)
Data sharing with service providers as per our Privacy Policy